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Preface

TO THE STUDENT

This textbook emphasizes a 20th-century perspective on introductory physics.
Contemporary physicists build models of the natural world that are based on
a small set of fundamental physics principles and on an understanding of the
microscopic structure of matter, and they apply these models to explain and
predict a very broad range of physical phenomena. In order to involve students
of introductory physics in the contemporary physics enterprise, this textbook
emphasizes:

Reasoning directly from a small number of fundamental physics principles,
rather than from a large set of special-case equations.
Integrating contemporary insights, such as atomic models of matter,
quantized energy, and relativistic dynamics, throughout the curriculum.
Engaging in the full process of creating and refining physical models
(idealizing, making approximations, explicitly stating assumptions, and
estimating quantities).
Reasoning iteratively about the time-evolution of system behavior, both on
paper and through the construction and application of computationalmodels.

Because the physical world is 3-dimensional, we work in 3D throughout the
text. Many students find the approach to 3D vectors used in this book easier
than standard treatments of 2D vectors.

Textbook and Supplemental Resources

Modern Mechanics (Volume 1, Chapters 1–12) focuses on the atomic structure
of matter and interactions between material objects. It emphasizes the wide
applicability and utility of a small number of fundamental principles: the
Momentum Principle, the Energy Principle, and the Angular Momentum
Principle, and the Fundamental Assumption of Statistical Mechanics.We study
how to explain and predict the behavior of systems as different as elementary
particles, molecules, solid metals, and galaxies.

Electric andMagnetic Interactions (Volume 2, Chapters 13–23) emphasizes
the somewhat more abstract concepts of electric and magnetic fields and
extends the study of the atomic structure of matter to include the role of
electrons. The principles of electricity and magnetism are the foundation for
much of today’s technology, from cell phones to medical imaging.

Additional resources for students are freely available at this site:

www.wiley.com/college/chabay

The web resources include several supplements. A copy of Chapter 1 is
provided for students who are currently using Volume 2 but whose previous
physics course did not use Volume 1. This chapter introduces 3D vectors and
vector algebra, and includes an introduction to computational modeling in
VPython, which is used throughout the textbook.

Supplement S1 treats the kinetic theory of gases and heat engines, and can
be used by students who have completed Chapter 12 on Entropy. Supplement
S2 explains the basic principles of PN junctions in semiconductor devices,
and can be used by students who have completed Chapter 21: Patterns of
Field in Space. Supplement S3 includes a more mathematically sophisticated
treatment ofmechanical and electromagnetic waves andwave phenomena, and

ix

http://www.wiley.com/college/chabay


Chabay fpref.tex 10/11/2014 9: 33 Page x

x Preface

can be used by students who have completed Chapter 23 on Electromagnetic
Radiation.

Answers to odd-numbered problems may be found at the end of the book.
The new Student Solutions Manual is available for purchase as a printed

supplement and contains fully worked solutions for a subset of end of chapter
problems.

Prerequisites

This book is intended for introductory calculus-based college physics courses
taken by science and engineering students. It requires a basic knowledge
of derivatives and integrals, which can be obtained by studying calculus
concurrently.

Modeling

Matter & Interactions places a major emphasis on constructing and using
physical models. A central aspect of science is the modeling of complex
real-world phenomena. A physical model is based on what we believe
to be fundamental principles; its intent is to predict or explain the most
important aspects of an actual situation. Modeling necessarily involves making
approximations and simplifying assumptions that make it possible to analyze a
system in detail.

Computational Modeling

Computational modeling is now as important as theory and experiment in
contemporary science and engineering. We introduce you to serious computer
modeling right away to help you build a strong foundation in the use of this
important tool.

In this course you will construct simple computational models based on
fundamental physics principles. You do not need any prior programming
experience–this course will teach you the small number of computational
concepts you will need. Using VPython, a computational environment based
on the Python programming language, you will find that after less than an hour
you can write a simple computational model that produces a navigable 3D
animation as a side effect of your physics code.

Computational modeling allows us to analyze complex systems that would
otherwise require very sophisticatedmathematics or that could not be analyzed
at all without a computer. Numerical calculations based on the Momentum
Principle give us the opportunity to watch the dynamical evolution of the
behavior of a system. Simple models frequently need to be refined and
extended. This can be done straightforwardly with a computer model but is
often impossible with a purely analytical (non-numerical) model.

VPython is free, and runs on Windows, MacOS, and Linux. Instructions in
Chapter 1 tell you how to install it on your own computer, and how to find a
set of instructional videos that will help you learn to use VPython.

Questions

As you read the text, you will frequently come to a question that looks like this:

QUESTION What should I do when I encounter a question in the
text?

A question invites you to stop and think, to make a prediction, to carry out
a step in a derivation or analysis, or to apply a principle. These questions
are answered in the following paragraphs, but it is important that you make
a serious effort to answer the questions on your own before reading further.
Be honest in comparing your answers to those in the text. Paying attention to
surprising or counterintuitive results can be a useful learning strategy.
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Checkpoints

Checkpoints at the end of some sections ask you to apply new concepts or
techniques. These may involve qualitative reasoning or simple calculations.
You should complete these checkpoints when you come to them, before
reading further. The goal of a checkpoint is to help you consolidate your
understanding of the material you have just read, and to make sure you are
ready to continue reading. Answers to checkpoints are found at the end of
each chapter.

Conventions Used in Diagrams

Force

Component of force

Velocity

Momentum

Position

Distance

A path

Electric field

Component of magnetic field

Magnetic field

Component of electric field

Torque

Angular momentum

The conventions most commonly used to represent vectors and scalars in
diagrams in this text are shown in the margin. In equations and text, a vector
will be written with an arrow above it: p⃗.

TO THE INSTRUCTOR

The approach to introductory physics in this textbook differs significantly from
that in most textbooks. Key emphases of the approach include:

Starting from fundamental principles rather than secondary formulas
Atomic-level description and analysis
Modeling the real world through idealizations and approximations
Computational modeling of physical systems
Unification of mechanics and thermal physics
Unification of electrostatics and circuits
The use of 3D vectors throughout

Web Resources for Instructors

Instructor resources are available at this web site:

www.wiley.com/college/chabay

Resources on this site include lecture-demo software, textbook figures,
clicker questions, test questions, lab activities including experiments and
computational modeling, a computational modeling guide, and a full solutions
manual. Contact your Wiley representative for information about this site.

Electronic versions of the homework problems are available inWebAssign:

www.webassign.net

Some instructor resources are available through WebAssign as well.
Other informationmay be found on the authors’Matter & Interactionsweb

site:

matterandinteractions.org

Also on the authors’ website are reprints of published articles about Matter &
Interactions, including these:

Chabay, R. & Sherwood, B. (1999). Bringing atoms into first-year physics.
American Journal of Physics 67, 1045–1050.
Chabay, R.W. & Sherwood, B. (2004). Modern mechanics.American Journal
of Physics 72, 439–445.
Chabay, R. W. & Sherwood, B. (2006). Restructuring Introductory E&M.
American Journal of Physics 74, 329–336.
Chabay, R.& Sherwood, B. (2008) Computational physics in the introductory
calculus-based course. American Journal of Physics 76(4&5), 307–313.
Beichner, R., Chabay, R., & Sherwood, B. (2010) Labs for the Matter &
Interactions curriculum. American Journal of Physics 78(5), 456–460.

http://www.wiley.com/college/chabay
http://www.webassign.net
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Computational Homework Problems

Some important homework problems require the student to write a simple
computer program. The textbook and associated instructional videos teach
VPython, which is based on the Python programming language, and which
generates real-time 3D animations as a side effect of simple physics code
written by students. Such animations provide powerfully motivating and
instructive visualizations of fields and motions. VPython supports true vector
computations, which encourages students to begin thinking about vectors as
much more than mere components. VPython can be obtained at no cost for
Windows, Macintosh, and Linux at vpython.org.

In the instructor resources section of matterandinteractions.org is “A Brief
Guide to Computational Modeling in Matter & Interactions” which explains
how to incorporate computation into the curriculum in a way that is easy
for instructors to manage and which is entirely accessible to students with
no prior programming experience. There you will also find a growing list of
advanced computational physics textbooks that use VPython, which means
that introducing students to Python and VPython in the introductory physics
course can be of direct utility in later courses. Python itself is now widely used
in technical fields.

Desktop Experiment Kit for Volume 2

On the authors’ web site mentioned above is information about a desktop
experiment kit for E&M that is distributed by PASCO. The simple equipment
in this kit allows students to make key observations of electrostatic, circuit,
and magnetic phenomena, tightly integrated with the theory (www.pasco.com,
search for EM-8675). Several chapters contain optional experiments that can
be done with this kit. This does not preclude having other, more complex
laboratory experiences associated with the curriculum. For example, one such
lab that we use deals with Faraday’s law and requires signal generators, large
coils, and oscilloscopes. You may have lab experiments already in place that
will go well with this textbook.

What’s New in the 4th Edition

The 4th edition of this text includes the following major new features:

Increased support for computational modeling throughout, including sample
code.
Discussion throughout the text contrasting iterative and analytical problem
solutions.
Many new computational modeling problems (small and large).
Improved discussion throughout the text of the contrast between models of
a system as a point particle and as an extended system.
An improved discussion of the Momentum Principle throughout Volume 1,
emphasizing that the future momentum depends on two elements: the
momentum now, and the impulse applied.
Improved treatment of polarization surface charge in electrostatics
(Chapter 14) and circuits (Chapter 18) based on the results of detailed
3D computational models.
A more extensive set of problems at the end of each chapter, with improved
indication of difficulty level.

In order to reduce cost and weight, some materials that have seen
little use by instructors have been moved to the Wiley web site
(www.wiley.com/college/chabay) where they are freely available. These
materials include Supplement S1 (Chapter 13 in the 3rd Edition: kinetic
theory of gases, thermal processes, and heat engines), Supplement S2 on PN

http://www.pasco.com
http://www.wiley.com/college/chabay


Chabay fpref.tex 10/11/2014 9: 33 Page xiii

Preface xiii

junctions (formerly an optional section in Chapter 22 in the 3rd Edition),
and Supplement S3 (a significantly extended version of Chapter 25 in the 3rd
Edition: electromagnetic interference and diffraction, wave-particle duality,
and a new section on mechanical waves and the wave equation).

Additional changes in the 4th Edition include:

In Chapter 5, improved treatment of curving motion and an added section
on the dynamics of multiobject systems.
An improved sequence of topics in Chapter 6, with an explicit discussion of
the role of energy in computational models, and an improved treatment of
path independence, highlighting its limitation to point particles.
A new section in Chapter 7 on the effect of the choice of reference frame on
the form of the Energy Principle, and explicit instruction on how to model
several kinds of friction in a computational model.
In Chapter 8, discussion of the lifetime of excited states and on the
probabilistic nature of energy transitions.
In Chapter 9, now renamed “Translational, Rotational, and Vibrational
Energy,” improved treatment of the energetics of deformable systems.
In Chapter 11, analysis of a physical pendulum.
A detailed discussion in Chapter 16 of how to calculate potential difference
by numerical path integration.
An improved treatment of motional emf in the case of a bar dragged along
rails (Chapter 20).

Suggestions for Condensed Courses

In a large course for engineering and science students with three 50-minute
lectures and one 110-minute small-group studio lab per week, or in a studio
format with five 50-minute sessions per week, it is possible to complete most
but not all of the mechanics and E&M material in two 15-week semesters. In
an honors course, or a course for physics majors, it is possible to do almost
everything. Youmay be able to go further or deeper if your course has a weekly
recitation session in addition to lecture and lab.

What can be omitted if there is not enough time to do everything? In
mechanics, the one thing we feel should not be omitted is the introduction to
entropy in terms of the statistical mechanics of the Einstein solid (Chapter 12).
This is a climax of the integration of mechanics and thermal physics. One
approach to deciding what mechanics topics can be omitted is to be guided
by what foundation is required for Chapter 12. See other detailed suggestions
below.

In E&M, one should not omit electromagnetic radiation and its effects on
matter (Chapter 23). This is the climax of the whole E&M enterprise. One way
to decide what E&M topics can be omitted is to be guided by what foundation
is required for Chapter 23. See other detailed suggestions below.

Any starred section (*) can safely be omitted. Material in these sections is
not referenced in laterwork. In addition, the following sectionsmay be omitted:

Chapter 3 (The Fundamental Interactions): The section on determinism
may be omitted.

Chapter 4 (Contact Interactions): Buoyancy and pressure may be omitted
(one can return to these topics by using Supplement S1 on gases).

Chapter 7 (Internal Energy): If you are pressed for time, you might choose
to omit the second half of the chapter on energy dissipation, beginning with
Section 7.10.

Chapter 9 (Translational, Rotational, and Vibrational Energy): The
formalism of finding the center of mass may be skipped, because the important
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applications have obvious locations of the center of mass. Although they are
very instructive, it is possible to omit the sections contrasting point-particle
with extended systemmodels; youmay also omit the analysis of sliding friction.

Chapter 10 (Collisions): A good candidate for omission is the analysis of
collisions in the center-of-mass frame. Since there is a basic introduction to
collisions in Chapter 3 (before energy is introduced), one could omit all of
Chapter 10. On the other hand, the combined use of the Momentum Principle
and the Energy Principle can illuminate both fundamental principles.

Chapter 11 (AngularMomentum):Themain content of this chapter should
not be omitted, as it introduces the third fundamental principle of mechanics,
theAngularMomentumPrinciple.Onemight choose to omitmost applications
involving nonzero torque.

Chapter 12 (Entropy: Limits on the Possible): The second half of this
chapter, on the Boltzmann distribution, may be omitted if necessary.

Chapter 15 (Electric Field of Distributed Charges): It is important that
students acquire a good working knowledge of the patterns of electric field
around some standard charged objects (rod, ring, disk, capacitor, sphere). If
however they themselves are to acquire significant expertise in setting up
physical integrals, they need extensive practice, and you might decide that the
amount of time necessary for acquiring this expertise is not an appropriate use
of the available course time.

Chapter 16 (Electric Potential): The section on dielectric constant can be
omitted if necessary.

Chapter 17 (Magnetic Field): In the sections on the atomic structure of
magnets, you might choose to discuss only the first part, in which one finds
that the magnetic moment of a bar magnet is consistent with an atomic model.
Omitting the remaining sections on spin and domains will not cause significant
difficulties later.

Chapter 19 (Circuit Elements):The sections on series and parallel resistors
and on internal resistance, meters, quantitative analysis of RC circuits, and
multiloop circuits can be omitted. Physics and engineering students who need
to analyze complex multiloop circuits will later take specialized courses on the
topic; in the introductory physics course the emphasis should be on giving all
students a good grounding in the fundamental mechanisms underlying circuit
behavior.

Chapter 20 (Magnetic Force): We recommend discussing Alice and
Bob and Einstein, but it is safe to omit the sections on relativistic
field transformations. However, students often express high interest in the
relationship between electric fields and magnetic fields, and here is an
opportunity to satisfy some aspects of their curiosity. Motors and generators
may be omitted or downplayed. The case study on sparks in air can be omitted,
because nothing later depends critically on this topic, though it provides an
introductory-level example of a phenomenon where an intuitively appealing
model fails utterly, while a different model predicts several key features of
the phenomenon. Another possibility is to discuss sparks near the end of the
course, because it can be a useful review of many aspects of E&M.

Chapter 22 (Faraday’s Law): Though it can safely be omitted, we
recommend retaining the section on superconductors, because students are
curious about this topic. The section on inductance may be omitted.

Chapter 23 (Electromagnetic Radiation): The treatment of geometrical
optics may be omitted.
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Interactions and
Motion

This textbook deals with the nature of matter and its interactions. The main
goal of this textbook is to have you engage in a process central to science:
constructing and applying physical models based on a small set of powerful
fundamental physical principles and the atomic structure of matter. The variety
of phenomena that we will be able to model, explain, and predict is very wide,
including the orbit of stars around a black hole, nuclear fusion, the formation
of sparks in air, and the speed of sound in a solid. This first chapter deals with
the physical idea of interactions.

OBJECTIVES

After studying this chapter you should be able to

Deduce from observations of an object’s motion whether or not it has
interacted with its surroundings.
Mathematically describe position and motion in three dimensions.
Mathematically describe momentum and change of momentum in three
dimensions.
Read and modify a simple computational model of motion at constant
velocity.

1.1 KINDS OF MATTER

We will deal with material objects of many sizes, from subatomic particles to
galaxies. All of these objects have certain things in common.

Atoms and Nuclei

Ordinary matter is made up of tiny atoms. An atom isn’t the smallest type
of matter, for it is composed of even smaller objects (electrons, protons, and
neutrons), butmany of the ordinary everyday properties of ordinarymatter can
be understood in terms of atomic properties and interactions. As you probably
know from studying chemistry, atoms have a very small, very dense core, called
the nucleus, around which is found a cloud of electrons. The nucleus contains
protons and neutrons, collectively called nucleons. Electrons are kept close to
the nucleus by electric attraction to the protons (the neutrons hardly interact
with the electrons).

QUESTION Recall your previous studies of chemistry. How many
protons and electrons are there in a hydrogen atom? In a helium or
carbon atom?

1
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When you encounter a question in the text, you should think for a
moment before reading on. Active reading contributes to significantly greater
understanding. In the case of the questions posed above, if you don’t remember
the properties of these atoms, it may help to refer to the periodic table on the
inside front cover of this textbook.

Hydrogen is the simplest atom, with just one proton and one electron.
A helium atom has two protons and two electrons. A carbon atom has six
protons and six electrons. Near the other end of the chemical periodic table,
a uranium atom has 92 protons and 92 electrons. Figure 1.1 shows the relative
sizes of the electron clouds in atoms of several elements but cannot show the
nucleus to the same scale; the tiny dot marking the nucleus in the figure is much
larger than the actual nucleus.

Hydrogen

1 electron

Carbon

6 electrons

Iron

26 electrons

Uranium

92 electrons

1 × 10 –10 m

Figure 1.1 Atoms of hydrogen, carbon,
iron, and uranium. The gray blur represents
the electron cloud surrounding the nucleus.
The black dot shows the location of the
nucleus. On this scale, however, the
nucleus would be much too small to see.

Hydrogen nucleus

1 proton

Tritium nucleus

1 proton + 2 neutrons

Deuterium nucleus

1 proton + 1 neutron

Carbon nucleus

6 protons + 6 neutrons

Helium-3 nucleus

2 protons + 1 neutron

Helium-4 nucleus

2 protons + 2 neutrons

1 × 10–15 m

Figure 1.2 Nuclei of hydrogen, helium,
and carbon. Note the very much smaller
scale than in Figure 1.1!

The radius of the electron cloud for a typical atom is about 1×10−10 meter.
The reason for this size can be understood using the principles of quantum
mechanics, amajor development in physics in the early 20th century. The radius
of a proton is about 1×10−15 meter, very much smaller than the radius of the
electron cloud.

Nuclei contain neutrons as well as protons (Figure 1.2). The most common
form or “isotope” of hydrogen has no neutrons in the nucleus. However, there
exist isotopes of hydrogen with one or two neutrons in the nucleus (in addition
to the proton). Hydrogen atoms containing one or two neutrons are called
deuterium or tritium. The most common isotope of helium has two neutrons
(and two protons) in its nucleus, but a rare isotope has only one neutron; this
is called helium-3.

The most common isotope of carbon has six neutrons together with the six
protons in the nucleus (carbon-12), whereas carbon-14 with eight neutrons is
an isotope that plays an important role in dating archaeological objects.

Near the other end of the periodic table, uranium-235, which can undergo
a fission chain reaction, has 92 protons and 143 neutrons, whereas uranium-238,
which does not undergo a fission chain reaction, has 92 protons and 146
neutrons.

Molecules and Solids

When atoms come in contact with each other, they may stick to each
other (“bond” to each other). Several atoms bonded together can form a
molecule—a substance whose physical and chemical properties differ from
those of the constituent atoms. For example, water molecules (H2O) have
properties quite different from the properties of hydrogen atoms or oxygen
atoms.

An ordinary-sized rigid object made of bound-together atoms and big
enough to see and handle is called a solid, such as a bar of aluminum. A new
kind of microscope, the scanning tunneling microscope (STM), is able to map
the locations of atoms on the surface of a solid, which has provided new
techniques for investigatingmatter at the atomic level. Two such images appear
in Figure 1.3. You can see that atoms in a crystalline solid are arranged in
a regular three-dimensional array. The arrangement of atoms on the surface
depends on the direction along which the crystal is cut. The irregularities
in the bottom image reflect “defects,” such as missing atoms, in the crystal
structure.

Liquids and Gases

When a solid is heated to a higher temperature, the atoms in the solid vibrate
more vigorously about their normal positions. If the temperature is raised
high enough, this thermal agitation may destroy the rigid structure of the
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solid. The atoms may become able to slide over each other, in which case the
substance is a liquid.

At even higher temperatures the thermal motion of the atoms or
molecules may be so large as to break the interatomic or intermolecular bonds
completely, and the liquid turns into a gas. In a gas the atoms or molecules are
quite free to move around, only occasionally colliding with each other or the
walls of their container.

Figure 1.3 Two different surfaces of a
crystal of pure silicon. The images were
made with a scanning tunneling
microscope. (Images courtesy of Randall
Feenstra, IBM Corp.)

We will learn how to analyze many aspects of the behavior of solids and
gases. We won’t have much to say about liquids, because their properties are
much harder to analyze. Solids are simpler to analyze than liquids because
the atoms stay in one place (though with thermal vibration about their usual
positions). Gases are simpler to analyze than liquids because between collisions
the gas molecules are approximately unaffected by the other molecules.
Liquids are the awkward intermediate state, where the atoms move around
rather freely but are always in contact with other atoms. Thismakes the analysis
of liquids very complex.

Planets, Stars, Solar Systems, and Galaxies

Cluster

of galaxies

Galaxy

The planet

Jupiter in our

Solar System

Figure 1.4 Our Solar System exists inside
a galaxy, which itself is a member of
a cluster of galaxies. (Photos courtesy
NASA/JPL-Caltech)

In our brief survey of the kinds of matter that we will study, we make a giant
leap in scale from atoms all the way up to planets and stars, such as our
Earth and Sun. We will see that many of the same principles that apply to
atoms apply to planets and stars. By making this leap we bypass an important
physical science, geology, whose domain of interest includes the formation of
mountains and continents. We will study objects that are much bigger than
mountains, and wewill study objects that aremuch smaller thanmountains, but
we don’t have time to apply the principles of physics to every important kind of
matter.

Our Sun and its accompanying planets constitute our Solar System. It is
located in the Milky Way galaxy, a giant rotating disk-shaped system of stars.
On a clear dark night you can see a band of light (the MilkyWay) coming from
the huge number of stars lying in this disk, which you are looking at from a
position in the disk, about two-thirds of the way out from the center of the disk.
Our galaxy is a member of a cluster of galaxies that move around each other
much as the planets of our Solar Systemmove around the Sun (Figure 1.4). The
Universe contains many such clusters of galaxies.

Point Particles

It is common in physics to talk about the motion of a “point particle.” What
we mean by a particle is an object whose size, shape, and internal structure
are not important to us in the current context, and which we can consider
to be located at a single point in space. In modeling the motion of a real
object (whether it is a galaxy or a proton), we often choose to make the
simplifying assumption that it is a point particle, as if Superman or a giant space
alien had come along and squeezed the object until it was compressed into
a very tiny, structureless microscopic speck with the full mass of the original
object.

Of course, there are many situations in which it would be absurd to use
this approximation. The Earth, for example, is a large, complex object, with a
core of turbulent molten rock, huge moving continents, and massive sloshing
oceans. Radioactivity keeps its core hot; electromagnetic radiation from the
Sun warms its surface; and thermal energy is also radiated away into space.
If we are interested in energy flows or continental motion or earthquakes we
need to consider the detailed structure and composition of theEarth.However,
if what we want to do is model the motion of the Earth as it interacts with other
objects in our Solar System, it works quite well to ignore this complexity, and to
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treat the Earth, the Sun, the Moon, and the other planets as if they were point
particles.

Even most very tiny objects, such as atoms, protons, and neutrons, are not
truly point particles—they do have finite size, and they have internal structure,
which can influence their interactions with other objects. By contrast, electrons
may really be point particles—they appear to have no internal structure, and
attempts to measure the radius of an electron have not produced a definite
number (recent experiments indicate only that the radius of an electron is less
than 2×10−20 m, much smaller than a proton).

As we consider various aspects of matter and its interactions, it will be
important for us to state explicitly whether or not we are modeling material
objects as point particles, or as extended and perhaps deformable macroscopic
chunks of matter. In Chapters 1–3 we will emphasize systems that can usefully
be modeled as particles. In Chapter 4 we will begin to consider the detailed
internal structure of material objects.

1.2 DETECTING INTERACTIONS

Objects made of different kinds of matter interact with each other in
various ways: gravitationally, electrically, magnetically, and through nuclear
interactions. How can we detect that an interaction has occurred? In this
section we consider various kinds of observations that indicate the presence
of interactions.

QUESTION Before you read further, take a moment to think about
your own ideas of interactions. How can you tell that two objects
are interacting with each other?

Change of Direction of Motion

+

+

+

+

+

+

+

+

+

+

Figure 1.5 A proton moves through space,
far from almost all other objects. The
initial direction of the proton’s motion is
upward, as indicated by the arrow. The ×’s
represent the position of the proton at
equal time intervals.

Suppose that you observe a proton moving through a region of outer space,
far from almost all other objects. The proton moves along a path like the one
shown in Figure 1.5. The arrow indicates the initial direction of the proton’s
motion, and the ×’s in the diagram indicate the position of the proton at equal
time intervals.

QUESTION Do you see evidence in Figure 1.5 that the proton is
interacting with another object?

Evidently a change in direction is a vivid indicator of interactions. If you
observe a change in direction of the motion of a proton, you will find another
object somewhere that has interacted with this proton.

QUESTION Suppose that the only other object nearby was another
proton. What was the approximate initial location of this second
proton?

Since two protons repel each other electrically, the second proton must have
been located to the right of the bend in the first proton’s path.

Change of Speed
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Figure 1.6 An electron moves through
space, far from almost all other objects.
The initial direction of the electron’s
motion is upward and to the left, as
indicated by the arrow. The ×’s represent
the position of the electron at equal time
intervals.

Suppose that you observe an electron traveling in a straight line through outer
space far from almost all other objects (Figure 1.6). The path of the electron is
shown as though a camera had takenmultiple exposures at equal time intervals.

QUESTION Where is the electron’s speed largest? Where is the
electron’s speed smallest?

The speed is largest at the upper left, where the ×’s are farther apart, which
means that the electron has moved farthest during the time interval between
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exposures. The speed is smallest at the bottom right, where the ×’s are closer
together, which means that the electron has moved the least distance during
the time interval between exposures.

QUESTION Suppose that the only other object nearby was another
electron. What was the approximate initial location of this other
electron?

The other electron must have been located directly just below and to the right
of the starting location, since electrons repel each other electrically.

Evidently a change in speed is an indicator of interactions. If you observe
a change in speed of an electron, you will find another object somewhere that
has interacted with the electron.

Velocity Includes Both Speed and Direction

In physics, the word “velocity” has a special technical meaning that is different
from its meaning in everyday speech. In physics, the quantity called “velocity”
denotes a combination of speed and direction. Even if the speed or direction
of motion is changing, the velocity has a precise value (speed and direction) at
any instant. In contrast, in everyday speech, “speed” and “velocity” are often
used as synonyms. In physics and other sciences, however, words have rather
precise meanings and there are few synonyms.

For example, consider an airplane that at a particular moment is flying
with a speed of 1000 kilometers/hour in a direction that is due east. We say
the velocity is 1000 km/h, east, where we specify both speed and direction. An
airplane flying west with a speed of 1000 km/h would have the same speed but
a different velocity.1 2

Figure 1.7 Two successive positions of a
particle (indicated by a dot), with arrows
indicating the velocity of the particle at
each location. The shorter arrow indicates
that the speed of the particle at location 2
is less than its speed at location 1.

We have seen that a change in an object’s speed, or a change in the
direction of its motion, indicates that the object has interacted with at least one
other object. The two indicators of interaction, change of speed and change of
direction, can be combined into one compact statement:

A change of velocity (speed or direction or both) indicates the
existence of an interaction.

In physics diagrams, the velocity of an object is represented by an arrow: a line
with an arrowhead. The tail of the arrow is placed at the location of the object
at a particular instant, and the arrow points in the direction of the motion of
the object at that instant. The length of the arrow is proportional to the speed
of the object. Figure 1.7 shows two successive positions of a particle at two
different times, with velocity arrows indicating a change in speed of the particle
(it’s slowing down). Figure 1.8 shows three successive positions of a different
particle at three different times, with velocity arrows indicating a change in
direction but no change in speed. Note that the arrows themselves are straight;
even if the path of the particle curves over time, at any instant the particle may
be considered to be traveling in a specific direction.

1

2
3

Figure 1.8 Three successive positions of a
particle (indicated by a dot), with arrows
indicating the velocity of the particle at
each location. The arrows are the same
length, indicating the same speed, but they
point in different directions, indicating a
change in direction and therefore a change
in velocity.

We will see a little later that velocity is only one example of a physical
quantity that has a “magnitude” (an amount or a size) and a direction. Other
examples of such quantities are position relative to an origin in 3D space,
changes in position or velocity, and force. In Section 1.4 we will see how to
represent such quantities as vectors: single mathematical entities that combine
information about magnitude and direction.

Uniform Motion

Suppose that you observe a rock moving along in outer space far from all other
objects. We don’t knowwhat made it start moving in the first place; presumably
a long time ago an interaction gave it some velocity and it has been coasting
through the vacuum of space ever since.
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It is an observational fact that such an isolated object moves at constant,
unchanging speed, in a straight line. Its velocity does not change (neither
its direction nor its speed changes). We call motion with unchanging
velocity “uniform motion” (Figure 1.9). Other terms for uniform motion
include “uniform velocity” and “constant velocity,” since velocity refers to both
speed and direction.

Figure 1.9 “Uniform motion”—no change
in speed or direction.

QUESTION Is an object at rest in uniform motion?

If an object remains at rest, then neither the speed nor direction of the object’s
velocity changes. This is a special case of uniform motion: the object’s speed
is constant (zero is a valid value of speed) and the direction of motion, while
undefined, is not changing.

QUESTION If we observe an object in uniform motion, can we
conclude that it has no interactions with its surroundings?

When we observe an object in uniform motion, one possibility is that it has no
interactions at all with its surroundings. However, there is another possibility:
the objectmay be experiencingmultiple interactions that cancel each other out.
In either case, we can correctly deduce that the “net” (total) interaction of the
object with its surroundings is zero.

Checkpoint 1 (a)Which of the following do you see moving with constant
velocity? (1) A ship sailing northeast at a speed of 5 meters per second
(2) TheMoon orbiting the Earth (3) A tennis ball traveling across the court
after having been hit by a tennis racket (4) A can of soda sitting on a table
(5) A person riding on a Ferris wheel that is turning at a constant rate.
(b) In which of the following situations is there observational evidence for
significant interaction between two objects? How can you tell? (1) A ball
bounces off a wall with no change in speed. (2) A baseball that was hit by
a batter flies toward the outfield. (3) A communications satellite orbits the
Earth. (4) A space probe travels at constant speed toward a distant star.
(5) A charged particle leaves a curving track in a particle detector.

1.3 NEWTON’S FIRST LAWOFMOTION

The basic relationship between change of velocity and interaction is
summarized qualitatively by what is known as Newton’s “first law of
motion,” though it was originally discovered by Galileo. In his original Latin,
Newton said, “Corpus omne perseverare in statu suo quiescendi vel movendi
uniformiter in directum, nisi quatenus a viribus impressis cogitur statum illum
mutare.” A literal translation is “Every body persists in its state of resting or
of moving uniformly in a direction, except to the extent that it is compelled to
change that state by forces pressed upon it.” Expressing this in more modern
language, we have this:

NEWTON’S FIRST LAWOFMOTION

Every body persists in its state of rest or of moving with constant speed
in a constant direction, except to the extent that it is compelled to change
that state by forces acting on it.

“Force” is the way in which the amount of interaction is quantified, and we’ll
discuss force in detail in Chapter 2. The words “except to the extent” imply
that the stronger the interaction, the more change there will be in direction
and/or speed. The weaker the interaction, the less change. If there is no net
(total) interaction at all, the object’s motion will be uniform (constant speed
and direction); this could happen either because there are no interactions or
because there are interactions that cancel each other, such as equally strong
pushes to the left and right. It is important to remember that if an object is not
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moving at all, its velocity is not changing, so it too may be considered to be in
uniform motion.

Newton’s first law of motion is only qualitative, because it doesn’t give
us a way to calculate quantitatively how much change in speed or direction
will be produced by a certain amount of interaction, a subject we will take up
in the next chapter. Nevertheless, Newton’s first law of motion is important in
providing a conceptual framework for thinking about the relationship between
interaction and motion.

This law represented a major break with ancient tradition, which assumed
that constant pushing was required to keep something moving. This law
says something radically different: no interactions at all are needed to keep
something moving!

QUESTION To move a box across a table at constant speed in
a straight line, you must keep pushing it. Does this contradict
Newton’s first law?

Since a constant interaction is required to keep the box moving, we might be
tempted to conclude that Newton’s first law of motion does not apply in many
everyday situations. However, what matters is the net interaction of the box
with its surroundings, which could be zero if there are multiple interactions
that cancel each other out.

QUESTION In addition to your hand, what other objects in the
surroundings interact with the box?

The table also interacts with the box, in a way that we call friction. If you push
just hard enough to compensate exactly for the table friction, the sum of all
the interactions is zero, and the box moves at constant speed as predicted by
Newton’s first law (Figure 1.10). (If you push harder than the table does, the
box’s speed steadily increases.)

Push by hand

Push by table

Motion of box

Figure 1.10 The red arrows represent the
magnitude and direction of the pushes the
box gets from your hand and from the
friction with the table. If these pushes add
up to zero, the box moves with constant
speed in a straight line, indicated by the
green arrow.

It is difficult to observe motion without friction in everyday life, because
objects almost always interact with many other objects, including air, flat
surfaces, and so on. You may be able to think of situations in which you have
seen an object keep moving at constant (or nearly constant) velocity, without
being pushed or pulled. One example of a nearly friction-free situation is a
hockey puck sliding on ice. The puck slides a long way at nearly constant speed
in a straight line (constant velocity) because there is little friction with the ice.
An even better example is the uniform motion of an object in outer space, far
from all other objects.

QUESTION Is a change of position an indicator of an interaction?

Not necessarily. If the change of position occurs simply because a particle is
moving at constant speed and direction, then a mere change of position is not
an indicator of an interaction, since uniform motion is an indicator of zero net
interaction. We need to know the object’s velocity at each observation to be
able to make further deductions.

QUESTION If you observe an object at rest in one location, and
later you observe it again at rest but in a different location, can
you conclude that an interaction took place?

Yes. You can infer that there must have been an interaction to give the
object some velocity to move the object toward the new position, and another
interaction to slow the object to a stop in its new position.

QUESTION Is it possible to deduce the existence of an interaction
even though you do not observe a change?

As we saw when we considered pushing a box across a table at constant
speed, sometimes we may find indirect evidence for an additional interaction.
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When something doesn’t change although we would normally expect a change
due to a known interaction, we can logically deduce that an additional
interaction must be occurring. For example, consider a helium-filled balloon
that hovers motionless in the air despite the downward gravitational pull of the
Earth. Evidently there is some additional kind of interaction that opposes
the gravitational interaction. In this case, interactions with air molecules
have the net effect of pushing up on the balloon (“buoyancy”). The lack of
change implies that the effect of the air molecules exactly compensates for the
gravitational interaction with the Earth.

The stability of the nucleus of an atom is another example of indirect
evidence for an additional interaction. The nucleus contains positively charged
protons that repel each other electrically, yet the nucleus remains intact.
We conclude that there must be some other kind of interaction present, a
nonelectric attractive interaction that overcomes the electric repulsion. This
is evidence for a nonelectric interaction called the “strong interaction,” which
as we will see acts among protons and neutrons to hold the nucleus together.
We will discuss the strong interaction in Chapter 3.

Other Indicators of Interaction

Change of velocity is not the only indication that an object has interacted with
its surroundings, but it is the only change possible for a single object that is
modeled as a point particle, which has neither shape nor internal structure.
In later chapters we will examine other kinds of changes, such as change of
temperature, change of shape or configuration, and change of identity (for
example, in nuclear reactions). In Chapters 1–3, however, we will concentrate
on how interactions change motion.

Checkpoint 2 (a) Apply Newton’s first law to each of the following
situations. In which situations can you conclude that the object is
undergoing a net interaction with one or more other objects? (1) A
book slides across the table and comes to a stop. (2) A proton in a
particle accelerator moves faster and faster. (3) A car travels at constant
speed around a circular race track. (4) A spacecraft travels at a
constant speed toward a distant star. (5) A hydrogen atom remains at
rest in outer space. (b) A spaceship far from all other objects uses its
rockets to attain a speed of 1×104 m/s. The crew then shuts off the power.
According to Newton’s first law, which of the following statements about
the motion of the spaceship after the power is shut off are correct? (Choose
all statements that are correct.) (1) The spaceship will move in a straight
line. (2) The spaceship will travel on a curving path. (3) The spaceship will
enter a circular orbit. (4) The speed of the spaceshipwill not change. (5) The
spaceship will gradually slow down. (6) The spaceship will stop suddenly.

1.4 DESCRIBING THE 3DWORLD: VECTORS

Physical phenomena take place in the 3D world around us. In order to be able
to make quantitative predictions and give detailed, quantitative explanations,
we need tools for describing precisely the positions and velocities of objects in
3D, and the changes in position and velocity due to interactions. These tools
are mathematical entities called 3D “vectors.” A symbol denoting a vector is
written with an arrow over it:

r⃗ is a vector

In three dimensions a vector is a triple of numbers ⟨x,y,z⟩. Quantities like the
position or velocity of an object can be represented as vectors:

r⃗1 = ⟨3.2,−9.2,66.3⟩m (a position vector)

v⃗1 = ⟨−22.3,0.4,−19.5⟩m/s (a velocity vector)
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Many vectors have units associated with them, such as meters or meters per
second. In this course, we will work with the following important physical
quantities that are vectors: position, velocity, rate of change of velocity
(acceleration), momentum, rate of change of momentum, force, angular
momentum, torque, electric field, magnetic field, energy flow, and momentum
flow. All of these vectors have associated physical units.

We use the notation ⟨x,y,z⟩ for vectors because it emphasizes the fact that
a vector is a single entity, and because it is easy to work with. This notation
appears in many calculus textbooks; you will probably encounter other ways
of expressing vectors mathematically as well.

Position Vectors

x

y

z

Figure 1.11 Right-handed 3D coordinate
system. The xy plane is in the plane of
the page, and the z axis projects out of
the page, toward you.

A position vector is a simple example of a physical vector quantity. We will use
a 3DCartesian coordinate system to specify positions in space and other vector
quantities. Usually we will orient the axes of the coordinate system as shown
in Figure 1.11: +x axis to the right, +y axis upward, and +z axis coming out of
the page, toward you. This is a “right-handed” coordinate system: if you hold
the thumb, first, and second fingers of your right hand perpendicular to each
other, and align your thumb with the x axis and your first finger with the y axis,
your second finger points along the z axis. In some math textbook discussions
of 3D coordinate systems, the x axis points out, the y axis points to the right, and
the z axis points up. This is the same right-handed coordinate system, viewed
from a different “camera position.” Since we will sometimes consider motion
in a single plane, it makes sense to orient the xy plane in the plane of a vertical
page or computer display, so we will use the viewpoint in which the y axis
points up.

A position in 3D space can be considered to be a vector, called a position
vector, pointing from an origin to that location. Figure 1.12 shows a position
vector, represented by an arrow with its tail at the origin, that might represent
your final position if you started at the origin and walked 4 meters along the
x axis, then 2 meters parallel to the z axis, then climbed a ladder so you were
3 meters above the ground. Your new position relative to the origin is a vector
that can be written like this:

x

z

y

ry = 3 m

rz = 2 m

rx = 4 m

r

Figure 1.12 A position vector
r⃗= ⟨4,3,2⟩m and its x, y, and z
components.

r⃗= ⟨4,3,2⟩m

Each of the numbers in the triple is called a “component” of the vector, and
is associated with a particular axis. Usually the components of a vector are
denoted symbolically by the subscripts x, y, and z:

v⃗= ⟨vx,vy,vz⟩ (a velocity vector)

r⃗= ⟨rx,ry,rz⟩ (a position vector)

r⃗= ⟨x,y,z⟩ (alternative notation for a position vector)

The components of the position vector r⃗= ⟨4,3,2⟩m are:

rx = 4m (the x component)

ry = 3m (the y component)

rz = 2m (the z component)

The x component of the vector v⃗ is the number vx. The z component of the
vector v⃗1 = ⟨−22.3,0.4,−19.5⟩m/s is −19.5m/s. A component such as vx is not
a vector, since it is only one number.

QUESTION Can a vector be zero?




